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An approximate method is given for calculating the magnetic field of
a coil of circular cross section with continuous coil windings.

At the present time much attention is being devoted
to the study of electromagnetic heating and drying of ma-
terials by industrial-frequency currents. Briefly this
new method of thermal preparation of materials con-
sists in the following. The material, together with
ferromagnetic elements, is placed in the alternating
electromagnetic field of a coil, as a result of which
heat is generated in the ferromagnetic elements and
is transferred immediately to the material. The mag-
netic field strength at different points in space must
be known to determine the heat sources. Existing
formulas for calculating magnetic fields are either
too complicated for practical use, or enable the field
to be calculated only on the axis of the coil [1}.

It is thus necessary to develop an approximate
method for calculating the magnetic fields of coils of
various transverse cross sections, i.e., one which is
also convenient for taking into account magnetic ma~
terials distributed inside the coil.

The present article considers the simplest case in
which the magnetic field is calculated for a coil of
circular transverse cross section with continuous coil
windings but with no magnetic materials on the inside.

It should be noted that this method is also suitable
for making calculations for coils of other transverse
cross sections when magnetic materials are present
inside the coils, although the calculations in this case
are much more complicated.

The mathematical problem is formulated in the
following manner.

It is well known that the magnetic scalar potential
¢ satisfies Laplace's equation at all points in space
where there is no electric current:

Ap =0, (1)

where A is the Laplacian operator.
The magnetic field strength H is determined from
the scalar potential as follows:

H=—gradg. (2)

In view of the angular symmetry of the problem in
our case (@ = ¢(r,z), 8¢/84 = 0), Eq. (1) is written in
cylindrical coordinates as
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The problem in this case is therefore two-~dimen-
sional. We now write the boundary conditions for Eq.
(3) (see the figure).
The condition of symmetry relative to the z-axis
{(absence of the components Hy. = —8¢/0r at points on
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the z-axis) is written as
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The following condition is also obvious:

¢ (r) z)r,z»ca - 0. (5)

It is well known that the normal component of the
magnetic field strength is continuous when crossing
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Diagram of the axial cross section
of the coil.

the current surface, and that the tangential component
is discontinuous by an amount equal to the number A
of amp-turns. We thus write the conditions at the sur-
face of the coil in the form

(6)
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Since the scalar magnetic potential is a multivalued
function, we must impose one more condition on the
function ¢(r, z) itself. On completing a single circuit
of a field line we have

Qrr 2) e—ro—@y (1, 2)]omo = 2A. (8)

We seek a solution of Eq. (3) with the boundary
conditions (4)—(8) by reducing it to ordinary differ-
ential equations [2].

Since the problem is symmetric it is sufficient to )
find the solution in the first quadrant of the (z, r) plane.
The quadrant is divided into four parts (see the figure),
and the line dividing regions II and II* has the equation
R=2z —v, wherey =1 — Ry.

Keeping the distribution of the dipole magnetic
fields in mind, we find it convenient to seek a solution
of the problem in the form of polynomials in some
degree of the variable r.
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We represent the solutions in the appropriate re-
gions in the form
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We impose the requirement that the expression
Agr(r,z) should be orthogonal with respect to the
functions r*K 72 (k = 1,2,...,N)with weight r over the
segment (0,Ry), and that the expression Ag¢yy(r, z)
should be orthogonal relative to the functions -2kt
k=1,2,..., M~ 1) with weight r® over the segment
(Ry, «). We thus obtain
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k=1, 2 .., M—1). (11)

Expressions (10) and (11) giveusa systemof (N + M — 1)
ordinary second-order differential equations for the
(N+ M+ 1) unknown functions {ay(z)}, {bm(2)} (n =
=1,2,...,N; m=1,2,..., M). The two equations
which are lacking may be obtained from the boundary
conditions (6) and (7).

We write this system of equations in the explicif form
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Similar reasoning for the functions {aj(z)} and
{b¥(z)} gives us a similar system of equations:
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As usual we seek a solution of the homogeneous
system (12) in the form

a,(2) = 0, exp (7» 72*>, by (2) = B, exp (}—;—)

9 0

(n=0,1,2 ... N; m=12 .., M).

The characteristic equation of system (12} is a poly-
nomial of degree N+ M — 1 in A2, Consequently, in
the general form this polynomial has N+ M — 1 roots
of hz, or 2(N+ M — 1) roots of A, which occur in pairs
of +A. There is in addition one zero root.

We consider the case in which all the roots #A4
(i=1,2,..., N+ M= 1) are different. It is then pos-
sible to write N+ M — 1 particular solutions of the
homogeneous system (12) in the form

a2 ‘shh, 2
a,=af shvxl R b, = B, sh, R,

(=12 ... N4+ M—1;
n=012 ., Ny m=1,92 ..M, (14)

where {oz%!, Blm} is the eigenvector corresponding to
the root A%.

It is not difficult to see that the nonhomogeneous
system (12) may be satisfied if we take the expression
Az instead of the constant ag (corresponding to the zero
root). The general solution of system (12) may then
be written as
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Using Euler's method we now look for particular solu-
tions of system (13) in the form

n(®) =00 (z — 7)) bn(?) =Bm(z—y)"
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(=012 .. N; m=1 2 .., M) (16)

The question of the behavior 2f the roots in the
characteristic equation of system (13) is in general
fairly complicated. We therefore consider the case
in which there are equal numbers of positive and nega-
tive roots. All the positive roots must be rejected
since they do not satisfy the boundary condition (5).
The general solution of system (13) may then be writ-
ten in the following form, similar to expression (15):
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The general solution of the problem is obtained by
inserting expressions (15) and (17) into formulas (9).
We determine the arbitrary constants ¢; and cj* (i =
=1,2,3,..., N+ M - 1) from the conditions for joining
the solutions at the boundary of the regions where
z = l. The conditions for joining the solutions at the
boundary of regions (I, II) and (I* II® are obtained
from the requirement that when the Laplace operator
is applied to the solutions, the results should satisfy
Egs. (10) and (11) continuously on passing through
the boundary of these regions. For this purpose we
write the solution at any point in region (I, I in the
form

@lr, 2)=0(zq(r, 2) +(1—0@)e(r, 2),
where

1, z< |,

e(z)={0, 2> 1.

The second derivative with respect to the variable z
is then written as

2 "
LD 5 Do)+

2

C o, o
+ 28 —D (9 — ;) + 8 5 +(1—0) 5

where 6 and 6' denote the Dirac delta function and its
derivative.

Table 1

Eigenvectors for the Roots of the Character-
istic Equation of System (12)

Ai o, @, B: B2

0 1 (] 0 ]
+2.8056 1 —0.991895 | —0.971633 0.979738
+0.67968 1 —0.105187 2.11785 | —1.22703

Since the last two terms as well as the radial terms
of the Laplace operator satisfy Eq. (10) at any point
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in space, the requirement that (10) should be satisfied
at boundary points where z = I leads to the following

Table 2

Eigenvectors for the Two Negative Roots of
the Characteristic Equation of System (13)

w | e |« : ;
0 1 0 0 [}
-—2.1261 1 —0.456001 0.903996 | —0.359997
—4.7633 1 —0.907429 | —0.676004 0.768575

systems of equations for determining the constants c¢;
and cf:
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We obtain similar systems of equations for the
boundary of regions II and IT*:

[ log( D—qp (r, DIr—%=Ddr =0,
R

log, (r 2) =g (r, D, r2¢=Ndr=10

k=1, 2, ..., M—1). (19)
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Thus, a system of 2(N+ M — 1) algebraic equations
is obtained to determine 2(N+ M ~ 1) arbitrary con-
stants cj and c;.

By way of an example, let us solve the problem,
confining ourselves to the second approximation of the
method described above, i.e., we get N=1 and M = 2.

In this case the characteristic equation of system
(12) is

A (33M* — 275A% +- 120) = 0,

which has the roots Ag =0, A;; =+2.8056 and A3 4 =
=+0.67968. The eigenvectors for each of these roots
are given in Table 1. ‘

The characteristic equation of system (13) has.the
form

A (330 + 132A% — 30242 — 823A + 210) = 0.

In addition to the zero root this equation has two posi-
tive and two negative roots. We are not interested in
the positive roots. The negative roots are Ay = —~2.1261,
and Ay = —4.7633.

The eigenvectors corresponding to these two roots
are given in Table 2.

The values of the constants cj and ci* are

¢ = —0.000886, ¢, = —0.1233,
G=1, ¢=—03739, c=0.02843.

for the case in which 7 = 2Ry, Ry =1, A =1.
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In this approximation the calculated field strength on
the axis of the coil at the center (z = 0) is equal to
0.9137, and at the edge of the coil (z = 1) it is equal
to 0.4862. The corresponding values found by solving
the problem exactly are 0.8945 and 0.4848. The ap-
proximate value at the center of the coil is higher by
2%, and at the edge by 0.3%.
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